PHASE EQUILIBRIA IN THE $\mathrm{Ag}_{4} \mathbf{S S e}^{\mathbf{S}} \mathrm{As}_{2} \mathrm{Se}_{3}$ SYSTEM

V. Vassilev ${ }^{*}$, L. Aljihmani and V. Parvanova
University of Chemical Technology and Metallurgy, 8 Kliment Ohridski blvd., 1756 Sofia, Bulgaria

Abstract

The phase diagram of the system $\mathrm{Ag}_{4} \mathrm{SSe}^{2}-\mathrm{As}_{2} \mathrm{Se}_{3}$ is studied by means of X-ray diffraction, differential thermal analyses and measurements of the microhardness and the density of the materials. The unit-cell parameters of the intermediate phases $3 \mathrm{Ag}_{4} \mathrm{SSe}^{2} \cdot \mathrm{As}_{2} \mathrm{Se}_{3}$ (phase A) and $\mathrm{Ag}_{4} \mathrm{SSe}^{2} \cdot 2 \mathrm{As}_{2} \mathrm{Se}_{3}$ (phase B) are determined as follows for phase A: $a=4.495 \AA, b=3.990 \AA$, $c=4.042 \AA, \alpha=89.05^{\circ}, \beta=108.98^{\circ}, \gamma=92.93^{\circ}$; for phase B: $a=4.463 \AA, b=4.136 \AA, c=3.752 \AA, \alpha=118.60^{\circ}, \beta=104.46^{\circ}, \gamma=83.14^{\circ}$. The phase $3 \mathrm{Ag}_{4} \mathrm{SSe}^{-} \cdot \mathrm{As}_{2} \mathrm{Se}_{3}$ and $\mathrm{Ag}_{4} \mathrm{SSe} \cdot 2 \mathrm{As}_{2} \mathrm{Se}_{3}$ have a polymorphic transition $\alpha \leftrightarrow \beta$ consequently at 105 and $120^{\circ} \mathrm{C}$. The phase A melts incongruently at $390^{\circ} \mathrm{C}$ and phase B congruently at the same temperature.

Keywords: $\mathrm{Ag}_{4} \mathrm{SSe}^{-} \mathrm{As}_{2} \mathrm{Se}_{3}$, differential thermal analysis, phase diagram, X -ray diffraction

Introduction

The combination of the compounds $\mathrm{Ag}_{4} \mathrm{SSe}$ and $\mathrm{As}_{2} \mathrm{Se}_{3}$ has not been studied in relation with the phase equilibria. Investigation of such a binary system is of a definite scientific and practical interest because components with different properties are involved. The composition $\mathrm{Ag}_{4} \mathrm{SSe}$ exists in the nature and is known as the mineral Aquilarite [1, 2]. It is synthesised for first time by Earley by means of a direct synthesis [3]. Its existence is confirmed also at investigation of the phase diagram of the system $\mathrm{Ag}_{2} \mathrm{~S}-\mathrm{Ag}_{2} \mathrm{Se}$ [4]. The phase transition $\alpha-\mathrm{Ag}_{4} \mathrm{SSe} \rightarrow \beta-\mathrm{Ag}_{4} \mathrm{SSe}$ takes place at $100 \pm 5^{\circ} \mathrm{C}$ and the compound $\mathrm{Ag}_{4} \mathrm{SSe}$ melts at $815^{\circ} \mathrm{C}$ [4]. The thermal energy gap of $\mathrm{Ag}_{4} \mathrm{SSe}$ is $0.24 \pm 0.01 \mathrm{eV}$ [5]. The conductivity of the material and its electron mobility and concentration at 300 K are $500 \mathrm{~S} \mathrm{~cm}^{-1}, 350 \mathrm{~cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ and $6.5 \cdot 10^{18} \mathrm{~cm}^{-3}$ [5]. $\mathrm{Ag}_{4} \mathrm{SSe}$ exhibits good thermoelectric properties [5, 6].
$\mathrm{As}_{2} \mathrm{Se}_{3}$ exists both in glassy and in crystal state. Under standard conditions of synthesis and quick cooling $\mathrm{As}_{2} \mathrm{Se}_{3}$ is obtained in the form of glass. On continuous heat treatment under $T>T_{\text {cr }}(T=$ const) and slow cooling $\mathrm{As}_{2} \mathrm{Se}_{3}$ is obtained in crystal state. $\mathrm{As}_{2} \mathrm{Se}_{3}$ is a high-ohm semiconductor. At $T=300 \mathrm{~K}$ the crystal $\mathrm{As}_{2} \mathrm{Se}_{3}$ has electrical conductivity of the order of $10^{-13} \mathrm{~S} \mathrm{~cm}^{-1}$, and the glassy $10^{-12} \mathrm{~S} \mathrm{~cm}^{-1}$. The thermal energy gap is 1.84 and 1.90 eV , respectively [7]. $\mathrm{As}_{2} \mathrm{Se}_{3}$ crystallizes in a monoclinic lattice structure.

The main goal of this work is the investigation of the phase equilibria in the system $\mathrm{Ag}_{4} \mathrm{SSe}-\mathrm{As}_{2} \mathrm{Se}_{3}$ by means of the conventional differential thermal analysis (DTA) [8-11], and X-ray powder diffraction (XRD) [8, 9] as well as determining the limits of the
solid solutions and the compositions of the intermediate phases (if such exist), thus building a base for a further complex investigation.

Experimental

The system $\left(\mathrm{Ag}_{4} \mathrm{SSe}\right)_{100-\mathrm{x}}\left(\mathrm{As}_{2} \mathrm{Se}_{3}\right)_{\mathrm{x}}$ was studied by the help of 17 compositions within the concentration range $0-100 \mathrm{~mol} \% \mathrm{As}_{2} \mathrm{Se}_{3}$. The compositions were prepared through a direct mono-temperature synthesis [7] mixing in proper ratio $\mathrm{Ag}_{4} \mathrm{SSe}$ and $\mathrm{As}_{2} \mathrm{Se}_{3}$ in vacuumed and sealed quartz ampoules. $\mathrm{Ag}_{4} \mathrm{SSe}$ and $\mathrm{As}_{2} \mathrm{Se}_{3}$ were obtained by the same method from initial elements with purity $4 \mathrm{~N}(\mathrm{Ag}, \mathrm{S})$ and $5 \mathrm{~N}(\mathrm{As}, \mathrm{Se})$. The maximum temperature and the duration of the synthesis were $900^{\circ} \mathrm{C}$ and 2 h . A vibrational stirring of the melt was applied. As a final step the melts were homogenized at $300^{\circ} \mathrm{C}$ for 1 h and frozen with water + ice.

The phase transformations in the samples were investigated by means of several methods as follows: derivatograph (equipment of the system Paulik-Paulik-Erdey made by MOM, Hungary) at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$; reference substance (calcinated $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$) and the studied substance weighed $\approx 0.3 \mathrm{~g}$ and was placed in evacuated and sealed quartz Stepanov's ampoules at pressure equal to $\approx 0.1 \cdot 10^{-2}$ Pa ; XRD (equipment TUR-M61) with CuK_{α} irradiation and Ni-filter, $\theta=5-40^{\circ}$, measurements of the microhardness (instrument PMT-3 and microscope MIM-7 at loading 10 and 20 g) and of the density (hydrostatic technique with toluene as reference liquid).

[^0]
Results and discussion

The data obtained from the X-ray diffraction analyses are summarized in a schematic diagram (Fig. 1).

The schematic diagram of the X-ray diffraction lines of the starting components $\mathrm{As}_{2} \mathrm{Se}_{3}$ and $\mathrm{Ag}_{4} \mathrm{SSe}$ is in a complete agreement with the results reported previously in the literature of $\mathrm{Ag}_{4} \mathrm{SSe}$ [1] and $\mathrm{As}_{2} \mathrm{Se}_{3}$ [12].

Within the range of concentrations $0-100 \mathrm{~mol} \%$ $\mathrm{As}_{2} \mathrm{Se}_{3}$ new lines are observed, different from those of $\mathrm{Ag}_{4} \mathrm{SSe}$ and $\mathrm{As}_{2} \mathrm{Se}_{3}$. They are of maximum intensity and best pronounced for compositions containing 25.0 and $66.7 \mathrm{~mol} \% \mathrm{As}_{2} \mathrm{Se}_{3}$. These data suggest the existence of two intermediate phases with the most probable compositions $3 \mathrm{Ag}_{4} \mathrm{SSe} \cdot \mathrm{As}_{2} \mathrm{Se}_{3}$ (phase A) and $\mathrm{Ag}_{4} \mathrm{SSe} \cdot 2 \mathrm{As}_{2} \mathrm{Se}_{3}$ (phase B).

The unit-cell parameters of phase A and phase B previously are determined by the Ito's method [13] as follows: for phase A: $a=4.495 \AA, b=3.990 \AA$, $c=4.042 \AA, \quad \alpha=89.05^{\circ}, \quad \beta=108.98^{\circ}, \gamma=92.93^{\circ}$; for phase B: $a=4.463 \AA, b=4.136 \AA, c=3.752 \AA$, $\alpha=118.60^{\circ}, \beta=104.46^{\circ}, \gamma=83.14^{\circ}$.

The indexing data of these phases are given in Tables 1 and 2, respectively.

We determined the temperatures of the different phase transitions by the heating curves (the samples were tempered in advance throughout 30 h at $T=300 \pm 10^{\circ} \mathrm{C}$). The results are summarized in Table 3.

Fig. 1 Schematic diagram of the X-ray diffraction lines for the system $\mathrm{Ag}_{4} \mathrm{SSe}-\mathrm{As}_{2} \mathrm{Se}_{3}$

The thermal effects of the samples rich of $\mathrm{As}_{2} \mathrm{Se}_{3}$ were not well marked because of the characteristic of the compound $\mathrm{As}_{2} \mathrm{Se}_{3}$ (difficult to crystallize). Many authors studying binary systems, one of the components of which is $\mathrm{As}_{2} \mathrm{Se}_{3}$, have run into such difficulties [14].

The observed effects of the thermograms are endothermal. The effects of column 9 of Table 3 are marked best (sharp pick and large area) and they correspond to the liquidus line.

There are several groups of endothermal effects the temperature of which does not depend on the composition of the samples, and these are the thermal effects of columns 1 and 3 to 7 inclusive. The temperature of the effects of columns 2 and 8 depend on the composition and most logically they belong to the solidus line. The area of the thermal effects with $390^{\circ} \mathrm{C}$ (column 7) and the effects of the liquidus line from 60 to $80 \mathrm{~mol} \% \mathrm{As}_{2} \mathrm{Se}_{3}$ depend on the composition of the samples as the maximum area is of samples containing 25.0 and $66.7 \mathrm{~mol}^{2} \mathrm{As}_{2} \mathrm{Se}_{3}$, respectively. Such dependency is characteristic either of chemical compound formation or of a non-variant point. Dependency is also observed in the thermal effects of columns 3 and 4 between the area and the composition with maximum area of samples containing 25.0 and $66.7 \mathrm{~mol} \% \mathrm{As}_{2} \mathrm{Se}_{3}$, respectively, which is characteristic either of a non-variant equilibrium or of phase transitions of the type $\alpha \leftrightarrow \beta$. On the left and the right of these compositions the area under the thermal effects reduces which confirms the assumptions above.

We could not develop the microstructure which therefore created difficulties with regard to the measuring of HV. In order to surmount this obstacle we built the Gauss' ranges of the most probable distribution of the HV property [15]. From the characteristic appearance of these ranges the number of the phases could be judged: mono-phasic or two-phasic. The samples containing 25.0 and $66.7 \mathrm{~mol} \% \mathrm{As}_{2} \mathrm{Se}_{3}$ respectively are mono-phasic, and all the rest are two-phasic. This gives us reason to assume that intermediate compounds with compositions $3 \mathrm{Ag}_{4} \mathrm{SSe} \cdot \mathrm{As}_{2} \mathrm{Se}_{2}$ and $\mathrm{Ag}_{4} \mathrm{SSe} \cdot 2 \mathrm{As}_{2} \mathrm{Se}_{2}$ are more likely to form with these compositions.

For the concentration ranges $0<x<25.0$; $25.0<x<66.7$ and $66.7<x<100.0 \mathrm{~mol} \% \mathrm{As}_{2} \mathrm{Se}_{3}$ two lines are observed. The lines 1 and 4 have to be related to the starting components, $\mathrm{Ag}_{4} \mathrm{SSe}$ and $\mathrm{As}_{2} \mathrm{Se}_{3}$ respectively, 2 and 3 - to the intermediate phases A and B-Fig. 2. The microhardness of the phases $3 \mathrm{Ag}_{4} \mathrm{SSe} \cdot \mathrm{As}_{2} \mathrm{Se}_{3}$ and $\mathrm{Ag}_{4} \mathrm{SSe} \cdot 2 \mathrm{As}_{2} \mathrm{Se}_{3}$ is $29-31$ and $41-43 \mathrm{kgf} \mathrm{mm}{ }^{-2}$, and that of the starting components $\mathrm{Ag}_{4} \mathrm{SSe}$ and $\mathrm{As}_{2} \mathrm{Se}_{3}-24$ [16] and $70 \mathrm{kgf} \mathrm{mm}^{-2}$, respectively [17].

The experimental results of measuring the density are shown in Fig. 3. The values obtained for d are between the values of the densities corresponding to the starting components $\mathrm{Ag}_{4} \mathrm{SSe}\left(7.40 \mathrm{~g} \mathrm{~cm}^{-3}\right.$) [16]

Table 1 Data from indexing of phase $3 \mathrm{Ag}_{4} \mathrm{SSe} \cdot \mathrm{As}_{2} \mathrm{Se}_{3}$

No.	$d_{\text {hkl(exp })} / \AA$	100I/I $/$ / \%	$Q=1 / d^{2}$	hkl	$d_{\text {hkl(calc) }} / \AA$
1	4.247	8	0.0554	100	4.246
2	3.983	7	0.0630	010	3.985
3	3.824	8	0.0684	001	3.822
4	3.455	14	0.0838	$\overline{1} 01$	3.453
5	3.058	35	0.1069	?	?
6	2.980	25	0.1126	$1 \overline{1} 0$	2.978
7	2.834	100	0.1240	110	2.838
8	2.758	31	0.1315	$011,01 \overline{1}$	2.758
9	2.671	12	0.1402	$\overline{1} 11$	2.662
10	2.561	11	0.1525	$11 \overline{1}$	2.560
11	2.471	10	0.1638	101	2.470
12	2.210	11	0.2047	$20 \overline{1}$	2.181
13	2.159	10	0.2145	$1 \overline{1} 1$	2.126
14	2.096	13	0.2276	111	2.073
15	2.032	14	0.2422	$10 \overline{2}$	2.003
16	1.989	16	0.2528	020	1.992
17	1.963	11	0.2595	$\overline{2} 11$	1.954
18	1.912	11	0.2736	002	1.911
19	1.870	13	0.2860	$21 \overline{1}$	1.874
20	1.789	8	0.3124	$11 \overline{2}$	1.774
21	1.702	9	0.3452	$12 \overline{1}$	1.697
22	1.615	8	0.3834	$\overline{2} 12$	1.607

Table 2 Data from indexing of phase $\mathrm{Ag}_{4} \mathrm{SSe} \cdot 2 \mathrm{As}_{2} \mathrm{Se}_{3}$

No.	$d_{\text {hkl(exp }} / \AA$	100I/ ${ }_{0} / \%$	$Q=1 / d^{2}$	hkl	$d_{\text {hkl(calc) }} / \AA$ 成
1	4.330	21	0.0533	100	4.322
2	3.630	18	0.0759	010	3.631
3	3.282	22	0.0928	$01 \overline{1}$	3.285
4	3.210	15	0.0970	001	3.213
5	2.870	100	01214	$10 \overline{1}$	2.904
6	2.779	100	0.1295	$110,1 \overline{1} 0$	2.780
7	2.010	47	0.2475	$\overline{2} 01$	2.010
8	1.988	77	0.2530	011	1.989
9	1.960	21	0.2603	$12 \overline{1}$	1.954
10	1.890	13	0.2799	$\overline{1} 11$	1.909
11	1.800	13	0.3086	$01 \overline{2}$	1.816
12	1.720	21	0.3380	111	1.720
13	1.633	28	0.3750	201	1.634
14	1.440	22	0.4823	300	1.441
15	1.400	13	0.5102	102	1.408

and $\mathrm{As}_{2} \mathrm{Se}_{3}\left(4.54 \mathrm{~g} \mathrm{~cm}^{-3}\right)$ [17]. The dependency $d(x)$ is characterized with an interruption (jump) at $x=25.0$ and $x=66.7 \mathrm{~mol} \% \mathrm{As}_{2} \mathrm{Se}_{3}$ which proves the existence of intermediate compounds with these compositions even though with narrow margins of homogeneity.

The intermediate compound $3 \mathrm{Ag}_{4} \mathrm{SSe} \cdot \mathrm{As}_{2} \mathrm{Se}_{2}$ melts incongruently at $390 \pm 5^{\circ} \mathrm{C}$ and $\mathrm{Ag}_{4} \mathrm{SSe} \cdot 2 \mathrm{As}_{2} \mathrm{Se}_{2}$ congruently at $390 \pm 5^{\circ} \mathrm{C}$. The two compounds endure polymorphic solid-state transition of the type $\alpha \leftrightarrow \beta$, at 105 and $120^{\circ} \mathrm{C}$ respectively. The liquidus lines of

Table 3 Temperatures of endothermal effects recorded on DTA curves of investigated samples

$\mathrm{As}_{2} \mathrm{Se}_{3} \mathrm{~mol} \%$			Temperature of endothermal effects $/{ }^{\circ} \mathrm{C}$	
0	65	95		

Fig. 2 Dependence $\operatorname{HV}(x)$ for samples of the system $\mathrm{Ag}_{4} \mathrm{SSe}-\mathrm{As}_{2} \mathrm{Se}_{3}$
the compound $\mathrm{Ag}_{4} \mathrm{SSe} \cdot 2 \mathrm{As}_{2} \mathrm{Se}_{2}$ form an obtuse angle, i.e. this compound tends to dissociate in a liquid-state.

The lines of two phases $\alpha-\mathrm{Ag}_{4} \mathrm{SSe}+\alpha-A$, $\alpha-\mathrm{A}+\alpha-\mathrm{B}$ and $\alpha-B+\mathrm{As}_{2} \mathrm{Se}_{3}$ - exist simultaneously within the concentration limits $0<x<25.0$; $25.0<x<66.7$ and $66.7<x<100$, i.e. these concentration fields correspond to three two-phase subfields of the system $\mathrm{Ag}_{4} \mathrm{SSe}-\mathrm{As}_{2} \mathrm{Se}_{3}$ phase diagram. The schematic diagram of the X-ray diffraction lines corresponds to the phase diagram with the formation of two intermediate compounds.

The characteristic change in the dependency $\operatorname{HV}(x)$ are within the concentration interval

Fig. 3 Dependence $d(x)$ for samples of the system $\mathrm{Ag}_{4} \mathrm{SSe}-\mathrm{As}_{2} \mathrm{Se}_{3}$
$95-100 \mathrm{~mol} \% \mathrm{As}_{2} \mathrm{Se}_{3}$ shows the presence of a homogeneity field though narrow (Fig. 2).

The dependency $d(x)$ is linear within the concentration intervals $0-25.0$, 25.0-66.7 and $66.7-100.0 \mathrm{~mol} \% \mathrm{As}_{2} \mathrm{Se}_{3}$. The samples are two-phasic and refer as a mechanical mixture in which the interaction between the phases is on a physical basis.

On the basis of the data from the differential thermal analysis, the X-ray diffraction analysis and measurements of the microhardness and the density the phase diagram of the system $\mathrm{Ag}_{4} \mathrm{SSe}-\mathrm{As}_{2} \mathrm{Se}_{3}$ (Fig. 4) is built-up. This phase diagram is characterised with the following peculiarities:

Fig. 4 Phase diagram of the system $\mathrm{Ag}_{4} \mathrm{SSe}-\mathrm{As}_{2} \mathrm{Se}_{3}$. I - Melt-L; II $-\beta-\mathrm{Ag}_{4} \mathrm{SSe} ;$ III $-\mathrm{L}+\beta-\mathrm{Ag}_{4} \mathrm{SSe}$; IV $-\beta-\mathrm{Ag}_{4} \mathrm{SSe}+\beta-3 \mathrm{Ag}_{4} \mathrm{SSe} \cdot \mathrm{As}_{2} \mathrm{Se}_{3}$; $\mathrm{V}-\beta-3 \mathrm{Ag}_{4} \mathrm{SSe}^{2} \cdot \mathrm{As}_{2} \mathrm{Se}_{3}+\mathrm{L} ; \mathrm{VI}-\mathrm{L}+\beta-\mathrm{Ag}_{4} \mathrm{SSe} \cdot 2 \mathrm{As}_{2} \mathrm{Se}_{3}$; VII $-\beta-\mathrm{Ag}_{4} \mathrm{SSe}^{2} 2 \mathrm{As}_{2} \mathrm{Se}_{3}+\mathrm{L}$; VIII - β-A- $\beta-\mathrm{Ag}_{4} \mathrm{SSe}^{2} 2 \mathrm{As}_{2} \mathrm{Se}_{3}$; IX $-\mathrm{L}+\mathrm{As}_{2} \mathrm{Se}_{3}$; $\mathrm{X}-\beta-\mathrm{Ag}_{4} \mathrm{SSe}^{2} \cdot 2 \mathrm{As}_{2} \mathrm{Se}_{3}+\mathrm{As}_{2} \mathrm{Se}_{3}$; $\mathrm{XI}-\beta-3 \mathrm{Ag}_{4} \mathrm{SSe}^{2} \cdot \mathrm{As}_{2} \mathrm{Se}_{3}+\alpha-\mathrm{Ag}_{4} \mathrm{SSe} \cdot 2 \mathrm{As}_{2} \mathrm{Se}_{3}$; XII $-\alpha-\mathrm{Ag}_{4} \mathrm{SSe}+\beta-\mathrm{Ag}_{4} \mathrm{SSe}$; XIII $-\beta-\mathrm{Ag}_{4} \mathrm{SSe}+\alpha-3 \mathrm{Ag}_{4} \mathrm{SSe} \cdot \mathrm{As}_{2} \mathrm{Se}_{3}$; XIV $-\alpha-3 \mathrm{Ag}_{4} \mathrm{SSe}^{2} \cdot \mathrm{As}_{2} \mathrm{Se}_{3}+\alpha-\mathrm{Ag}_{4} \mathrm{SSe}_{2} \mathrm{As}_{2} \mathrm{Se}_{3}$; $\mathrm{XV}-\alpha-\mathrm{B}+\mathrm{As}_{2} \mathrm{Se}_{3} ; \mathrm{XVI}-\alpha-\mathrm{Ag}_{4} \mathrm{SSe}$; $\mathrm{XVII}-\alpha-\mathrm{Ag}_{4} \mathrm{SSe}+\alpha-3 \mathrm{Ag}_{4} \mathrm{SSe} \cdot \mathrm{As}_{2} \mathrm{Se}_{3}$

- There are four non-variant equilibria: one peritectic with coordinates of the peritectic point $x=35 \mathrm{~mol} \%$ $\mathrm{As}_{2} \mathrm{Se}_{3}$ and $T=390^{\circ} \mathrm{C}$; two eutectic at $x=40$ and $95 \mathrm{~mol} \% \mathrm{As}_{2} \mathrm{Se}_{3}$ and $T=365$ and $330^{\circ} \mathrm{C}$ resp. and one eutectoidal equilibrium with coordinates of the eutectoidal point $x=10 \mathrm{~mol} \% \mathrm{As}_{2} \mathrm{Se}_{3}$ and $T=65^{\circ} \mathrm{C}$.
- As a result of various physico-chemical interactions taking place two intermediate phases with most probable compositions $3 \mathrm{Ag}_{4} \mathrm{SSe} \cdot \mathrm{As}_{2} \mathrm{Se}_{3}$ (phase A) and $\mathrm{Ag}_{4} \mathrm{SSe} \cdot 2 \mathrm{As}_{2} \mathrm{Se}_{3}$ (phase B). Phase A and B have polymorphic transitions respectively at 105 and $120^{\circ} \mathrm{C}$, proved by the help of DTA and XRD [18-21].

The phase $3 \mathrm{Ag}_{4} \mathrm{SSe} \cdot \mathrm{As}_{2} \mathrm{Se}_{3}$ melts incongruently, i.e. it is formed by the peritectic reaction

$$
3 \mathrm{Ag}_{4} \mathrm{SSe} \cdot \mathrm{As}_{2} \mathrm{Se}_{3} \xrightarrow{390+5^{\circ} \mathrm{C}} \beta-\mathrm{Ag}_{4} \mathrm{SSe}+\mathrm{L}
$$

The peritectic point is at a composition containing around $35 \mathrm{~mol} \% \mathrm{As}_{2} \mathrm{Se}_{3}$.

The intermediate phase B melts congruently at $390 \pm 10^{\circ} \mathrm{C}$ but tends to dissociate (has a rounded liquidus line). It divides the phase diagram $\mathrm{Ag}_{4} \mathrm{SSe}-\mathrm{As}_{2} \mathrm{Se}_{3}$ to two sub-diagrams of eutectic type: $\mathrm{Ag}_{4} \mathrm{SSe}-\mathrm{B}$ and $\mathrm{B}-\mathrm{As}_{2} \mathrm{Se}_{3}$.

- There are regions of boundary solid solutions based on $\mathrm{Ag}_{4} \mathrm{SSe}$. The solid solutions based on $\alpha-\mathrm{Ag}_{4} \mathrm{SSe}$
turn into solid solutions based on $\beta-\mathrm{Ag}_{4} \mathrm{SSe}$ through the two-phase region XV of the phase diagram. The temperature of the transition $\alpha \leftrightarrow \beta$ depends on the composition and varies from 65 to $105^{\circ} \mathrm{C}$. The regions of homogeneity based on $\alpha-\mathrm{Ag}_{4} \mathrm{SSe}$ expand at increasing the temperature and have maximum values at $x=5 \mathrm{~mol} \% \mathrm{As}_{2} \mathrm{Se}_{3}$ and $T=65^{\circ} \mathrm{C}$. A shift of the $\mathrm{As}_{2} \mathrm{Se}_{3}$ lines in the concentration region $90-100 \mathrm{~mol} \%$ is not observed at room temperature i.e. $\mathrm{As}_{2} \mathrm{Se}_{3}$ does not dissolve $\mathrm{Ag}_{4} \mathrm{SSe}$ (the rapid change in the values of the density $\Delta H V=H V(100)-H V(95)$ proves the existence of very narrow region of homogeneity).

Conclusions

By means of four independent technics the phase diagram of the system $\mathrm{Ag}_{4} \mathrm{SSe}-\mathrm{As}_{2} \mathrm{Se}_{3}$ is built-up. As a result of complex physico-chemical processes in solid and liquid state two intermediate phases are formed with most probable compositions $3 \mathrm{Ag}_{4} \mathrm{SSe} \cdot \mathrm{As}_{2} \mathrm{Se}_{3}$ and $\mathrm{Ag}_{4} \mathrm{SSe} \cdot 2 \mathrm{As}_{2} \mathrm{Se}_{3}$. These two phases together with the starting components $\left(\mathrm{Ag}_{4} \mathrm{SSe}\right.$ and $\left.\mathrm{As}_{2} \mathrm{Se}_{3}\right)$ and the polymorphism of $\mathrm{Ag}_{4} \mathrm{SSe}$ and the intermediate phases cause the existence of 17 phasic fields. Three of the fields are mono-phasic and the rest of them two-phasic. Of particular interest is the solid solution based on the low-temperature modification $\alpha-\mathrm{Ag}_{4} \mathrm{SSe}$ that possesses semiconductor properties [5, 6].

Acknowledgements

The authors acknowledge thankfully the financial support for this work from the Ministry of education and science (Fond 'Scientific investigations'-contract TN-1503/05 and 10185).

References

1 American Society of Testing Materials, Philadelphia 1969, ASTM 6-0550.
2 American Society of Testing Materials, Philadelphia 1969, ASTM 27-620.
3 J. W. Earley, Am. Mineral., 35 (1950) 337.
4 Z. Boncheva-Mladenova and K. Zaneva, J. Anorg. Allg. Chem., 437 (1977) 253.

5 V. Vassilev and Z. Boncheva-Mladenova, J. Univ. Chem. Technol. Metal. (Sofia), 27 (1984) 143 (in Bulgarian).
6 V. Vassilev and Z. G. Ivanova, Bull. Chem. Technol. Macedonia, 22 (2003) 21.
7 Z. Boncheva-Mladenova and V. S. Vassilev, Himia I Fizikohimia na poluprovodnikovite materiali, Narodna Prosveta, Sofia 1991 (in Bulgarian).
8 S. Weise and V. Kramer, J. Therm. Anal. Cal., 71 (2003) 159.
9 E. Filipec, J. Therm. Anal. Cal., 56 (1999) 1035.

10 M. Hichiri, C. Favotto, H. Zamali, Y. Feutelais, B. Legendre, A. Sebaoun and M. Jemal, J. Therm. Anal. Cal., 69 (2002) 509.
11 A. Wojakowska, E. Krzyzak and A. Wojakowski, J. Therm. Anal. Cal., 65 (2001) 491.

12 American Society of Testing Materials, Philadelphia 1969, ASTM 18-148.
13 T. Ito, X-ray studies on polymorphism, Maruzen Co. Ltd., Tokyo 1950, p. 187.
14 L. V. Vinetskii and R. A. Holodar, Statisticheskoe vzaimodeistvie elektronov i defektov v poluprovodnikov, Naukovaia Dumka, Kiev 1969 (in Russian).
15 V. Glazov and V. Virgorovich, Mikrotverdost metallov, Metallurgia, Moskva 1969 (in Russian).
16 V. S. Vassilev, V. A. Vachkov and Z. G. Ivanova, J. Mater. Sci.: In Electronics, 12 (2001) 161.

17 Z. U. Borissova, Chalkogenidnie poluprovodnikovie stekla, Leningradskogo Universiteta, Leningrad 1983 (in Russian).

18 S. A. Borkar and S. R. Dharwadkar, J. Therm. Anal. Cal., 78 (2004) 761.
19 A. Arenillas, F. Rubiera, B. Arias, J. J. Pis, J. M. Faúdez, A. L. Goldon and X. A. Garcia, J. Therm. Anal. Cal., 76 (2004) 603.
20 A. M. Abdel-Rehim, J. Therm. Anal. Cal., 76 (2004) 557.
21 M. M. Abdel-Aziz, J. Therm. Anal. Cal., 79 (2005) 709.

Received: April 20, 2005
Accepted: August 6, 2005
OnlineFirst: December 12, 2005

DOI: 10.1007/s10973-005-7063-3

[^0]: * Author for correspondence: venciv@uctm.edu

